COST EFFECTIVE POWDERS FOR LBM

Alliance Deep Dive 2021

EXCLUSIVE

THE AUTHORS

Ina Ludwig, *M.Sc.* Project Manager

Maximilian Kluge, *M.Sc.* Head of Materials and Finish

Motivation

Situation

- AM Market is heading for higher productivity rates and cost reduction potentials
- The powder costs show high reduction potentials, but also a lot insecurities regarding the required characteristics

What are the relevant cost drivers regarding powder production?

How is the quality of my parts effected?

Motivation

More background

	Layer thickness	Particle Size			
10 years ago	20-40 µm	10-45 µm	Powder	 Sticks to walls/ handling equipment/ parts blocked and polluted filters 	
Last years	30-60 μm	20-63 µm	Handling	 High hover times 	Get rid of fine
Most recent	30-90 μm	20-63 µm	Health	 Alveolar = Harmful to health Higher explosiveness 	particles
	Why not getting coarser?		Laser Process	 High specific surface = increased O₂ and H uptake; 	Check quality and costs

Fine Particles

Approach of the Deep Dive

Theoretical part

Powder Guide Book – Supply chain and atomization processes

Powder production process chain

Atomization processes

Powder Guide Book – Powder Costs

Market Survey

- Ti6Al4V ELI (grade 23) for coarse and standard PSD for each 100 and 1,000 kg
- Quotations were obtained from a total of 22 suppliers, of which 15 responded with an official offer. Consideration of 11 suppliers

Scaling

- Cost reduction for standard powder of an average of 12%
- Cost reduction for coarse powder of an average of 19%

Standard: $\approx 20-63 \, \mu m$ Coarse: $\approx 45-105 \, \mu m$

Powder Guide Book – Powder Costs

260

240

220

200

180

160

140

120

100

80

60

[€/kg]

D

Β.

H H

Standard

100 kg

Η____

-38%

Market Survey

- Ti6Al4V ELI (grade 23) for coarse and standard PSD for each 100 and 1,000 kg
- Quotations were obtained from a total of 22 suppliers, of which 15 responded with an official offer. Consideration of 11 suppliers

F _____ G, I

C, E, J, K

Coarse

100 kg

Η_

-44%

Standard

1,000 kg

PSD

- Cost reduction for 100 kg of an average of 38 %
- Cost reduction for 1,000 kg of an average of 44 %

В ___

G___

F, H

Coarse

1,000 kg

Powder Guide Book – Powder Costs

Market Survey

- Ti6Al4V ELI (grade 23) for coarse and standard PSD for each 100 and 1,000 kg
- Quotations were obtained from a total of 22 suppliers, of which 15 responded with an official offer. Consideration of 11 suppliers

Experimental part

Printability of Coarse Ti64 Powder – Powder Specification

Investigated powder

- Ti6Al4V ELI (grade 23)
- PSD of 45–106 μm
- Puchased for 30 €/kg

Chemical composition was within the specification

Printability of Coarse Ti64 Powder – Powder Specification

Investigated powder

- Ti6Al4V ELI (grade 23)
- PSD of 45–106 μm
- Purchased for 30 €/kg

Flowability

POWDER	BULK DENSITY [g/cm³]	TAPPED DENSITY [g/cm³]	HAUSNER RATIO	FLOWABILITY [s/50g]
20–53 µm	2.46 +/- 0.00	2.68 +/- 0.01	1.09	26.75
45–1 <mark>06 μ</mark> m	2.30 +/- 0.01	2.53 +/- 0.01	1.10	25.20

Printability of Coarse Ti64 Powder – Experimental Set Up

Parameter study

- Investigations were carried out on an SLM 250 HL and on a Concept Laser M2
- Mainly laser power, scanning speed and hatch distance were varied

Printability of Coarse Ti64 Powder – Results

Parameter study

- Investigations were carried out on an SLM 250 HL and on a Concept Laser M2
- Mainly laser power, scanning speed and hatch distance were varied

PARAMETER	VALUE
Layer thickness [µm]	60
Laser power [W]	320
Scanning speed [mm/s]	1,400
Hatch distance [µm]	80
Built rate [cm ³ /h]	24,14

Reaching density of > **99,9%**

Printability of Coarse Ti64 Powder – Results

Parameter study

- Investigations were carried out on an SLM 250 HL and on a Concept Laser M2
- Mainly laser power, scanning speed and hatch distance were varied

VICKERS HARDNESS FOR TI6AL4V 327.33 Machine supplier 346.6 HT 333.92 Figure 20: Vickers hardness for NHT Ti6Al4V 300 310 320 330 340 350 **HV10** ▶ minimum 🚽 maximum 丨 mean SURFACE ROUGHNESS FOR TI6AL4V 11.2 (Ra) Machine supplier 24.02 HT 20.36 NHT Figure 21: Surface roughness for Ti6Al4V

25

15

Sa [µm]

5

Approximately **6 µm** above IAPT reference data

🕨 minimum ┥ maximum 🛛 mean

Printability of Coarse Ti64 Powder – Experimental Set Up

Printing of tensile specimens

- Printing of 12 Tensile specimens
- heat treated at 800 °C for 2 hours before being separated from the build plate by wire cut eroding EDM

Form B $d_0 = 5 \text{ mm}$ according to DIN 50125

FINAL SPECIMENS ON BUILD PLATE

Printability of Coarse Ti64 Powder – Results

Printing of tensile specimens

- Printing of 12 Tensile specimens
- heat treated at 800 °C for 2 hours before being separated from the build plate by wire cut eroding EDM

VERTICAL 0°	R _m [MPa]	R _{p0.2} [MPa]	A [%]	E [GPa]
IAPT 45–106 μm (M2 Cusing 60 μm/400 W)	1,018.2	906	17.92	116
EOS (EOSINT M 280-400 W; EOS M 290-400 W)	1,100	1,000	14.5	110
SLM (60 μm/400 W)	991	905	15	130
GE (Laser M2 Series 5; 60 μm)	1,050	995	14.5	119

HORIZONTAL 90°	R _m [MPa]	R _{p0.2} [MPa]	A [%]	E [GPa]
IAPT 45–106 μm (M2 Cusing 60 μm/400 W)	1,051	955	14.62	118
EOS (EOSINT M 280-400 W; EOS M 290-400 W)	1,100	1,000	13.5	110
SLM (60 µm/400 W)	987	894	12	112
GE (Laser M2 Series 5; 60 µm)	1,050	995	13.5	118

Slightly lower strength, but higher ductility

Conclusion

Powder cost levers

- Cost reduction due to scaling between 12 – 19 %
- Cost reduction due to PSD between 38 – 44 %

Printability of coarse powder

- Density of > 99,9 % achieved
- Comparable hardness and slightly worse surface roughness
- Comparable tensile performance with the tendency to lower strength and higher ductility

<u>Outlook</u>

- Optimizing surface parameters
- Using higher layer thicknesses

COST EFFECTIVE POWDERS FOR LBM

Alliance Deep Dive 2021

EXCLUSIVE

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

