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Artificial Intelligence is evident in daily life and industries,  
proving valuable in encountering unstructured and changing data. 

AI has proven valuable while encountering unstructured and  
changing data when desiring structured outcomes, boosting sales 
and enhancing customer satisfaction.

We explore and offer an overview of artificial intelligence 
and its history. 

We identify current challenges in Additive Manufacturing 
and propose viable solutions for these challenges. 

We evaluate the solutions.

Artificial Intelligences highlights its potential as a key enabler in  
optimizing and advancing Additive Manufacturing.  

Despite existing hurdles, mainly in data availability and preparation,  
the timely and correct deployment of AI can greatly benefit the industry. 

AI can potentially serve as a co-pilot to designers, engineers and  
developers, contributing to overcoming the grand challenges of Additive 
Manufacturing.
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MotivationMotivation

There can be no doubt that the recent development and 
the astounding pace at which the development of Artificial 
Intelligence is progressing is impressive and might even scare 
or shock us from time to time. The pace of progression and the 
unbelievable success AI has had in its recent iterations must  
be reason enough to take a deeper look into »what is the  
deal with this AI thing«. And there are very good reasons to 
get involved. 

As we face a digital revolution and the world gets reshaped by 
digitalization and the rise of AI, our daily lives and interactions 
are undergoing a transformation, as do industries on a large 
scale. As you are reading this introductory text, let’s say it’s not 
the first thing you did after waking up, there is a chance that is 
far greater than zero that you have already encountered AI in 
one form or another. If you have already checked your mobile 
device, listened to music, or browsed the web, read through 
your emails, there surely was AI involved. That does not neces-
sarily mean that you were observed or that something learned 
from your behavior, but at least, you met unstructured and 
partly unknown data that otherwise would have eluded the 
grasp of classical algorithms. 
 
 
 

These interactions not only reach us in our personal lives,  
but they also extend to other sectors as well, including manu-
facturing. And for that matter, Additive Manufacturing.
Although the number of direct interactions per day paints a 
different image, that percentage is on a steep slope and may 
rise to 100% [Tho22; Sto22]. But there is still a lot of aware-
ness to be built on the topic [Ken23]. Which partly relates to 
the understanding of AI as human-like or human-imitating 
behavior. On one hand, the impact and range of AI implemen-
tation are commonly understated by the general populace. On 
the other hand, Large Language Models (LLM) sparked fear in 
some, overstating and fearing the level of advancement, AI has 
already made. We can clearly conclude that AI is everywhere 
and that there is buzz around it, for one reason or another. But 
why implement AI in the first place? There are clear reasons: 
There is a competitive edge to be gained or advancements 
to be made (In other words, there is money to be made and 
insights to be gathered). And between those two, all the 
shades and combinations are possible. Most of the time, they 
do align, sometimes they benefit the customer and the people, 
and sometimes only the entity deploying them gains any benefit 
at all. For most of us, a competitive lead, better products, 
or better services would be the edge that keeps employees 
employed, shareholders and stakeholders engaged, and the 
company alive, which in the end generates a monetary benefit. 

5. Motivation
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Technology adaptation and development lead to a competitive 
edge – which, in turn, enables the above. AI has proven to be 
valuable.  
Coming back to our initial example, of you encountering AI 
today. If you decided to start your day with coffee and the 
digital news, those are probably curated by AI. Funneling 
your browsing behavior, personal interests, engagement, and 
other multidimensional variables which must not be inherently 
observable. If you’re more on the page of paper, you might 
listen to music while reading, turning on your favorite playlist, 
which at some point will have all songs played, and shortly 
after that, you get handed personalized music curated by AI. 
We could delve into more examples. As a rule of thumb, you’ll 
encounter AI where there is a lot of unstructured and changing 
data, but you desire a structured outcome. Over the last few 
years, it was clearly shown that AI, to say the least, boosts 
sales and improves customer satisfaction. [Tri20] Although 
interesting, those use cases show day-to-day consumer inter-
action. Recent examples show that AI, and Machine Learning 
(ML) for that matter, may also be used to compute otherwise 
incomprehensibly large models of real-world objects, with 
results matching or even surpassing our most sophisticated 
numerical simulations [Kar21]. 
 
 

AM faces several challenges. These are cost per part, as a  
general challenge, quality assurance, developing new materials, 
automating AM processes, enabling the workforce, sustain-
ability, and optimizing the supply chain. Solving all of these 
ensures competitive, smart, and sustainable AM. 

In essence, our goal for this Deep Dive is straightforward: Can 
AI, with its all-encompassing influence, be the missing piece 
of the puzzle in tackling the as-yet unsolved challenges of 
AM? Our belief is grounded in the idea that we have all the 
prerequisites in place for a successful deployment of AI. There 
is a competitive edge to be carved out, a need for structured 
results in an environment of unstructured or fluctuating data, 
and a myriad of unknown variables waiting to be unearthed 
for a better comprehension of the underlying mechanics. Add 
to that, we now have in our hands a fresh, swiftly evolving, 
and potent toolbox in the form of AI, which might just give 
AM the push it needs to be the go-to choose for complex 
product challenges. Through this exploration, we aim to put 
forth potential AI solutions to navigate the towering challenges 
of AM. The question is not whether AI can contribute to the 
realm of AM but how we can best leverage its strengths to 
drive this industry forward.



AI might just give AM the 
push it needs to be the 
go-to option for complex 
product challenges.«

»
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Approach of the Deep Dive

6. Approach of the Deep Dive

Both fields we are trying to tackle are their own disciplines 
with their very own subfields and specialists in each of those 
fields. Every subfield brings with it its very own and specific 
set of problems and solution strategies. Concerning AI, we 
want to give you an overview of the state of the art of AI in 
industry applications. Surely, we cannot cover every aspect 
and intricate mathematical detail, thus, we try to make it as 
applicable as possible, to give you an overview, an idea, and 
maybe a guide to your very own use case.  
 
We will cover the basic ideas of ML and AI in general, and we  
have a staff picked list of concepts from the realm of AI that 
might be of interest for you, your production or research and 
development efforts. For those of you wanting to go way 
deeper, there is a list of references to online courses and good 
reads at the end of each paragraph. We won’t let you figure  

out your use cases all by yourself though. Naturally, we  
covered the AM process chain as well. While looking into  
different AM-processes and the challenges each of the  
different processes is facing one might get drowned in a  
flood of information.  
 
Our approach is not to identify each single process or  
problem specific challenge and trying to match AI on top of 
the problem, but to give you an idea of what the overarching,  
the grand challenges of AM might be. We reviewed the  
process chain bottom up, from single step singly purpose  
processes to the combined manufacturing efforts in AM.  
At the end, we identified the challenges the industry is facing 
right now, and derived possible solutions for those challenges. 
We are more than willing to assist in implementing these  
solutions, ensuring a smoother path forward.
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Although, unorthodox at first glance, most of our technolog-
ical innovations where first and foremost incubated by the 
means of science fiction literature. The golden age of science 
fiction in the early 20th century is one of those examples, 
where the human mind wandered, and though of unimagin-
able futures for humanity will live in the next decades and 
centuries. 

The notion of AI, that mimics human intelligence, is also 
derived from science fiction and dates to the late 19th century. 
The well received quote from Isaac Asimov on the very nature 
of science fiction is accompanied by the notion that a science 
fiction way of thinking is necessary for the making of the right 
decisions. 

»No sensible decision can be made any longer without consid-
ering not only the world as it is, but the world as it will be (…) 
but the core of science fiction, its essence, the concept about 
which it revolves, has become crucial to our salvation, if we are 
to be saved at all.« [Hol78]

This quote illustrates how thinking and forward thinking in 
humanity might evolve. Fantastic science fiction and fantasy 
stories constitute the mindset and way of thinking of gener-
ations of humans. The same goes for the story of AI. Science 
fiction laid the very foundation for mental models of a whole 
generation of scientists starting in the 1950s and 1960s. The 
most prominent of them, regarding computer science, is no 
other than Alan Turing [Tur50]. Turing asked the question »can 
machines think« and in the end argued, that we might hope, 
that one day, they can. Clearly, research and thinking about 
future possibilities went on. Sparking the first Ideas, thinking  
machines became a reality. First of its kind was the Logic 
Theorist [McC04] a program solely designed to prove mathe-
matical theorems, which it sometimes did better than humans. 
This was achieved by a branching tree search, logic symbolic 
programming and heuristics. Which by the way; the now used 
word heuristic was coined by the inventors of the Logic  
Theorist Allen Newell, Cliff Shaw, and Herbert Simon them-
selves. The concepts of managing branching explosions with 
heuristics is still in broad use today in the field of AI.  
 

7. State of the art 

In recent years, AI has emerged as a transformative technology,  
revolutionizing numerous fields, and impacting nearly every 
aspect of our lives. AI encompasses a wide range of approach-
es and techniques that enable machines to mimic or surpass 
human intelligence in various tasks.
The state of the art in AI spans multiple domains, including 
ML, natural language processing, computer vision, robotics, 
and more. ML has witnessed remarkable progress with  
the advent of DL models, which leverage artificial Neural 

Networks (NN) to automatically extract complex patterns  
and make predictions. These models have achieved ground-
breaking results in areas such as image recognition, speech 
synthesis, and language translation.
 
In this section, we will explore the state of the art in each of 
these domains. By understanding the current landscape, we 
can appreciate the potential of AI, identify areas for improve-
ment, and envision the future possibilities that lie ahead.

7.1 Brief history and introduction  
 to Artificial Intelligence

1974 – 1980

AI winter
1973

WABOT.1
1964

ELIZA
1950

Turing Test
1955

AI in language

1956

Logic Theorist
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The Logic Theorist was first introduced at the Darthmouth 
summer research project on AI, a conference which catalyzed 
the years of AI research to come. Still asking the question, 
what human logic and reasoning is about, scholars quickly 
realized and have already realized decades before that humans 
have a distinct set of symbols, which can be combined to form 
language. Natural Language Processing (NLP) was first suc-
cessfully tackled by Joseph Weizenbaum in 1966 with ELIZA, 
a »psychotherapist». Arguably ELIZA was not that good about 
»thinking« per se but was very good at pattern matching and 
giving its users the illusion of a deeper language understand-
ing. It was most famously known for its tranquilizing ability to 
bind users for hours on end to the screen. Which even came 
to the surprise of Weizenbaum himself, as users often anthro-
pomorphized the chatbot. [Wei66] The later years yielded not 
much groundbreaking success in the field of AI.

Interest in AI plummeted in the early seventies due to the well-
known hype cycle decline and remained in a deep slumber. 
The expectations for AI were high, as was the funding up to 
this point. But mid-century computers were just too weak.

Popular culture got inspired by the early successes of AI but 
painted a more sinister picture. Movies such as »2001 a Space 
Odyssey« (1968) or the novel series »Dune« (1965) may have 
inspired a later generation of researchers and later depictions 
of AI in popular culture such as in »Terminator« (1984) or »The 
Matrix« (1999) [Cla74; Her05; Cam84; Wac99].

By the mid-80s funding rose and interest in AI was at a high 
level again. This was also the time DL emerged from research. 
Although the nature of biological information processing and 
storage was discussed in the 50s [Ros58] the emergent compu-
tational properties of NNs where first discussed and described 
by John Hopfield in the 80s. Those mathematical descriptions 
laid the basis for DL as we know it today [Hop82]. At the same 
time, expert systems, as described by Edward Feigenbaum, 
were heavily financed [Fei81].

Due to Moore’s law still holding up, predicting the doubling 
of transistor count roughly every two years, formulated by 
Gordon Moore in 1965, [Sch97] the early 90s until the mid-
2010s saw another rise in development of AI, due to finally 
having the raw computing power available to tackle complex 
calculations on a broader scale. The slow and steady rise was 
accompanied by some media impactful successes for the field, 
as some researchers endeavored in the journey of beating 
human made games such as chess, Jeopardy, AlphaGo and 
later even DOTA 2. 
With a world champion in chess beaten by Deep Blue in 1997, 
IBM’s Watson winning at jeopardy in 2011, AlphaGo beating  
a Grandmaster in Go in 2015 and a world class team in DOTA2 
beaten by OpenAI in 2017 [Ope19].  As a side note, current 
research shows that the way an AI »thinks« is still very narrow, 
and that no system understands what some of the founding 
ideas of those games really mean [Wan22b]. At the same  
time, NLP and other fields got better month by month and 
integrated tightly into our devices. Speech recognition and text 
to speech or speech to text nowadays is an integral part of 
interaction with our devices. One first broadly used tool was 
Apple’s Siri, introduced in 2011.

Today, researchers, companies and government agencies are 
pushing hard for AI development. There are daily develop-
ments and news articles pointing towards advancements. 
Those advancements are fueled by the very data-intensive and  
connected nature of our society. Nourishment for AI in the 
form of data, be it structured or unstructured, is everywhere.  
Computational prowess is at a point, where we can mimic 
some of the functions of a biological way of thinking. 
Advancements are everywhere, be it in computer linguistics, 
physics, biology, image processing and generation in every 
field or clustering of data. There is no doubt about large 
language models (LLM) impressing us the most. Language con-
structs reality, interaction, and emotion. In our next paragraph, 
we will elaborate further on the landscape of today’s AI and 
methods used.
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7.2 Artificial Intelligence overview and map 

Before we go deep into the realm of AI, allow us a little  
remark and a definition. For each of the following subsections 
exist more than a few books, papers, and thousands of pages 
in form of mathematical proofs, description, application, 
design, and best practices, coming not only from engineering, 
but physics, biology, psychology, medicine, and every other 
research discipline you might think of. Arguably, AI is too vast 
to boil it down to a few pages, but we did try anyway.  

 
 

The map on this Page depicts the different subfields of AI, in 
general ML, NNs and DL are subfields of AI. As a very basic 
definition, AI and all subfields differ from basic algorithms in 
that an algorithm is just a recipe that takes an input, performs 
a task, and yields a result. 

You could compare that to a cooking recipe, that requires an 
input – ingredients, performs a task – the cooking itself, and 
has an output – a finished meal. The nature of AI differs from 
that in a very meaningful sense. Compared to the cooking 
recipe, you desire a specific meal. But the ingredients in your 
fridge do not meet the standard recipe and you are missing a 
few cooking utensils. Cooking with AI would now be able to 
yield a new recipe that fulfills your desire for a meal.

The analogy aims at the very core of what AI should be doing: 
it will flexibly learn to fulfill its directive like a human would. 
It is much like a chef will change the course if he misses the 
poultry but has only beef available. But do not expect fish if 
you only have pork, that’s something AI won’t be able to do 
for you.   

As a rule of thumb, AI must be able to change its algorithms, 
based on data availability and desired output and mimics 
human intelligence and behavior. We will elaborate on that 
further in the following subsections. ML as a subset of AI 
describes this concept in more detail, describing the process 
of machines extracting information from data and learning 
autonomous from it. NNs and therefore DL describe a subset 
of ML where you mimic the neuronal structure of the human 
brain. In Neural Nets and DL, we are leveraging the emergence 
of intelligence that happens when you wire neurons in a net.
We picked some of the concepts out of ML and took a better 
part from Neural Nets and DL and going to explain some of 
the concepts in the next section.

Figure 1: Subfields of Artificial Intelligence 

Artificial Intelligence

Machine Learning

Neural Nets

Deep

Learning

Subfields of Artificial Intelligence
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Figure 2: An overview of Machine Learning [Gol16; Ert21]
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7.3 Introduction to Machine Learning 

As already mentioned, in ML, the machine learns. The  
elephant in the room clearly is, how does it do that? There  
are different methods inside ML which are appropriate for  
different kinds of data and data availability. The following 
graphic shows some of the broader approaches. There is  
classical ML, ensemble techniques, Reinforced Learning (RL) 
and NNs and DL. Each of those can again be subdivided  

into other subfields. For example, in NNs, there are Convolu-
tional NNs, Adversarial NNs or DL NNs and more. But to get 
into the single definitions and descriptions, we need to first 
clarify terminology and concepts. 
But first we would like to start with the importance of data. 
After that we will discuss the difference between supervised 
and unsupervised learning.

Figure 3: General overview of Machine Learning Types [Gol16]

Machine Learning outline
Type of  
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Clear features
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is feasible
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Very complicated and 
organic data
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Prediction accuracy 
is key
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With data to insight, we elevate Additive  
Manufacturing with Artificial Intelligence.« 

»
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7.4 The importance of data 

Garbage in, garbage out. One of the most repeated mantras 
in programming and other computer science related fields 
of expertise. To get involved with AI we need to take a step 
back and consider, what does that even require? Data comes 
in a variety of forms and therefore also in a variety of quality 
and level of readiness to be deployed in statistical analysis 
and ML. If you are familiar with statistical analysis, you might 
know, that different tests for p-values, or the level of correla-
tion between two or more variables is dependent on certain 
prerequisites. 
Tests often require the data to be invariant or a normal 
distribution, ranked data differs in tests from metric data and 
so forth. Outliers can have a huge influence on how certain 
tests perform and sometimes you are testing the wrong 
correlations altogether, or even trying to find causalities when 
there are none or misinterpreting correlation for causality 
even through a lack of knowledge and interpreting the results 
of the statistical tests, which do require a lot of background 
knowledge in the field they were conducted for. A significant 
portion of statistical analysis is dedicated to acquiring the data 
in the first place and then cleaning them or developing them 
into new features, or even collecting more data if the first set 
did not suffice or hinted at another interesting correlation. All 
that is true for engineering, business, social sciences, physics, 
medicine and many more. And that still holds for AI [Gol16]. 
Nowadays we’ve given fields involved with the acquisition 
and cleaning and interpreting the data names, data engineer-
ing and data science, those fields are no longer tools in the 
toolbox of other fields of expertise, but have grown so large 

and powerful, that not only universities dedicate own fields of 
studies to them, but also whole businesses employ persons just 
for fulfilling the tasks. Both are equally important and should 
be considered in your endeavors for AI.  
 
Data engineering on one hand consists primarily of the acqui-
sition and maintenance of data pipelines, data science on the 
other hand then tries to do something with that data using 
diverse modeling and visualization methods. If we apply this to 
AM, you will need a robust pipeline, that can collect relevant 
data from processes, machines and other systems partaking in 
your production efforts, this could consist of in-process data, 
test data and other broader key performance indicators. This 
data then needs to be stored in databases and processed on 
machines, all with scalability in mind, ensuring availability and 
integrity of data for other branches and stakeholders. The 
workflow is rather straightforward and less explorative.  
 
In contrast to that, the data science aspect focuses on explo-
ration of data, what data could be relevant to extract useful 
information. Applied to AM, this could be to iteratively find 
out what in process data is useful for a given task, how to 
refine the data, what kind of features need to build from the 
data. The second job is making assumptions and predictions 
from the data and visualize that data for stakeholders. Both 
branches need to be covered in some way or the other. The 
least you would need is a robust pipeline, storage and prepa-
ration strategy and a robust toolset in statistics, analytics, and 
visualization. [Bol18]

7.5 Supervised learning and  unsupervised learning 

Supervised and unsupervised learning are both concepts,
which are always heard or mentioned when talking about
different problems tackled by ML. The biggest difference
between the two is, that in supervised learning, there is  
a ground truth – the dataset is labeled. The goal is, to find  
a function or representation of how input and output 
correspond.

As expected, except in numerical solvable relationships, there 
will be no function to describe every data point with every 
label, so a loss function is introduced. One such example is the 

mean square error often used in regression. But we are looking 
for a something close to visualized, it might look something 
like the following graphic. We generated some data with 
noise, with an almost linear relationship. We are looking for 
the weights in the regression problem: ŷ = wx + b. The best fit, 
as depicted in the graphs, is for w = 3.

Unsupervised learning on the other hand has no ground truth, 
there is no labeled data, and it is widely used to find patterns 
and therefore clustered data. The following Figure 5 shows 
the K-means clustering, where, with an initialization of cluster 
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centers, the distance between the data points and the cluster 
centers is expressed in a loss function.  
Supervised and unsupervised learning differ greatly in where 
they are applicable. As a rule of thumb, supervised learning is 

appropriate if you already know the outcome of specific 

conditions. Regression, classification, time series forecasting 
and simple form of speech to text would be fields, where 
supervised learning is applicable. If you do not know the 
outcome of your conditions and want to explore a dataset, 
you may use unsupervised learning for clustering, learning 
association rules or detect anomalies. The term learning 
in both supervised and unsupervised learning refers to 
the internal optimization of the algorithm to better fit the 
objective function. Simple data structures, clear label and 
difference between data points are requirements for classical 
approaches. But if you have those prerequisites fulfilled, there 
is typically no need to throw any other approach on that 
problem. Freely according to the motto: tolerances as exact as 
necessary – or models as complex as necessary.
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Figure 4: Linear regression and best fit example
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7.6 Reinforcement Learning 

The first contrasting contender to classical learning approaches 
is Reinforcement Learning. The term RL is often mentioned 
in the same sentences NNs and DL are mentioned. This does 
apply for newer methods, but there are also methods that only 
use the relationships and basic ideas of RL and do not utilize 
any form of artificial neurons. The very core of describes a 
relationship between an agent and an environment. Whereas 
the environment has certain states, the agent can undertake 
certain actions and is either rewarded or penalized by under-
taking its actions. There is also a certain level of risk involved 
for the agent, which is expressed by the connection between 
exploitation and exploration. 
  
Exploration meaning an incentive to explore new states, 
even if old methods yield good enough results. Exploitation 
meaning, how much of old results should be used. Let’s 
make this more approachable. Let’s say you have a dog  and 
have a reward function, namely a treat for said animal. It 
gets the treat whenever it fulfills a task for you or follows a 
specific command. If it does something it’s not supposed to 
do, there is either no reward or a punishment. You may also 
find analogies for exploration and exploitation in this. In our 
analogy the dog is the Agent, the environment is where the 
dog undertakes its actions. The actions are expected actions 
as reactions to a command. Following a sit command, the dog 
is expected to sit, but may, especially in the beginning try out 
other actions, for example barking or standing on its hind legs. 
This is our analogy for exploration. The further the training 

gets, the more a dog may exploit already working behaviors, 
for example to sit even if the command was not to sit. The dog 
knows at this point, that sitting yielded a reward. With more 
training the dog gets better at following diverse commands 
and reaching its goal faster. Let’s consider another rather 
simple example, utilizing a simple simulation. 

Imagine an environment, a 100x100 grid containing a marker at 
a fixed position. In this environment is a dot placed at a fixed 
position, this is our Agent. The agent has certain actions at its 
disposal, it may move up, down, left, right and diagonally. For 
each simulation step, it may move one field, thus having eight 
degrees of freedom. The learning can for example be achieved 
by Q-learning. The actions the ball can take are represented 
in the Q-table. It now can either explore and choose the next 
action at random, or it may exploit and choose the next action 
based on the highest Q-value currently assigned. Moving gives 
the dot a reward. Getting closer to the marker gives a +1, 
getting farther a -1, moving out of bounds a -10 and finding 
the marker gets +10. The Q-value is updated and used in 
further moves. At some point the state space and action space 
of simple algorithms gets too big for classical approaches, for 
those, deep reinforced NNs where introduced. For problems 
with an extreme number of states, the Q-table at some point 
gets very large. If a simple approach works for the problem at 
Hand, use the simple approach. Before we delve deeper into 
the rabbit hole, there again is some interesting further reading 
and watching attached on the right hand site [Sut98].

Figure 6: Reinforced Learning agent /environment
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Let’s start by elaborating on the first concept in the realm of 
NNs, which is the very basic perceptron [Kan03; Ros58; Ros57]. 
To understand how those networks work, we need to at least 
develop a very basic understanding of the neurons in our 
brain. These interactions where reason to transfer biology and 
neuroscience ideas to computing. On a very basic level, the 
neurons in our brain activate if their input is reaching a chem-
ically defined threshold, called firing threshold. Single neurons 
are connected via axons and can be connected in a various 
arrangements and be connected to different neurons.  
 
A single neuron activates if the sum of its input is higher 
than the firing threshold and it will consequently transfer the 
chemoelectrical impulse. The graphic above shows a percep-
tron structure which is modeled to mimic the logical AND.  
The blue neuron will only activate above a certain threshold 
which in turn outputs a signal to the wine-red output. 
The green dots are inputs, and both can take a binary value,  
so either 0 or 1. Let’s assume the activation function of  

the blue neuron is a step function, that activates when both 
inputs are 1, you would have input weights of 1 for both 
inputs and a bias of -1. In practice, those weights and biases 
would be achieved through a training process [Duk18; Ban23]. 
The logical AND can be represented by a dataset linearly  
separable. The sum of weights and biases is:

    wgreen1 +wgreen2 +bias; or 1+1-1, should equal or exceed 1 

 
Back to the neurons in our brain. As simple binary represen-
tation might not suffice. Our neurons and other cells as well 
have more intricate activation functions, which are in fact, not 
fully understood and even single cell behavior, which is much 
more complicated, is still undergoing active research.  [Alt20] 
By changing the activation function of the neuron you can 
change the output behavior. Inputs can be a floating range 
and you get partially active states that activate the neuron. 
Other logical functions may require additional layers.  

Green 1 Green 2 Red 

0  0  0

0 1  0

1 0  0

1 1 1

Table 1: Truth table of logical AND

Further reading

Stanford class    AI learns How to navigate
on reinforcement to escape: a maze with RL:
learning:  



7.8 Deep (Learning) Neural Networks 
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Further reading  

Backpropagation in more detail:  

Learning representations by back-propagating errors,  

D. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams:  

DOI:10.1038/323533a0

The next step is understanding how densely connected net-
works work. Exemplary in the graphic above you see a Deep 
Neural Network (DNN). This network consists of two inputs, 
one output and five densely connected hidden layers with  
neurons each. This network could for example take two values 
in and output another, where the output is the label of the 
two inputs. The inputs and label are somehow intertwined by 
a not yet seen connection. The task of the network would be 
to discover that connection and apply it to other values.  
 
On the technical side of things, those could be processing 
parameters like temperature and speed and labeled by the 
hardness of test specimen. The beauty of those networks is, 
that you can add, stack them, and expand them, so multiple 
inputs and multiple outputs can be chosen and thus better 
applied to multivariate technical processes. Training a network 
in its very basic configuration requires multiple steps. Biases 
and weights are often initialized by small random values. We 
then use these initialized values to feed data through the  
network for one epoch, meaning one full, or predetermined  
length of the dataset. For this we could again use the mean 

squared error. We get a number which uses our calculated 
values for the given output and compares the error to the 
actual output. The goal is to minimize this error. This is com-
monly achieved by back-propagation or gradient descent. On 
a very high level, back-propagation is used to calculate how 
much every weight in the network contributes to the over-
all losses. The back-propagation tells us what gradient each 
neuron has [Rum86].  
 
To adjust the weights we can use gradient descent, which tells 
us in which direction we should adjust the weights to reduce 
the loss. This works because a NN is basically a chain of  
functions. Back-propagation and gradient descent both lever-
age that chained functions can be differentiated by the chain 
rule of calculus. Weights and biases can be both adjusted 
using this technique. There are numerous other techniques to 
train networks, back-propagation and gradient descent are 
often utilized for regression tasks. After the first iterations, the 
model might fit the training data exceptionally too well, thus 
predicting training data well, but performing poorly on other 
data, for this regularization might be necessary.  
If those steps are completed, evaluation and fine-tuning may 
begin. If all has gone well, your model will produce accurate 
predictions for unknown data. Underlining the whole process 
are mathematically ideas derived at some point from observ-
ing nature. The learning process can be better described if 
we replace the labeled dataset with actions undertaken by a 
human for completing specific tasks. At some point you most 
likely learned how to drive a car or ride a bicycle.  
At the beginning you were unsure of what controls do what, 
how much do I need to steer to go around a corner, or to 
park, what gear is appropriate for what speed and inclination? 



7.9 Convolutional Neural Networks 

For Convolutional Neural Networks (CNN) the basic NN prin-
ciples still hold up, but for image recognition tasks there are 
a few more layers involved. The image above shows a simple 
and stylized representation of a convolutional NN. This stylized 
representation contains of hidden densely connected layers,  
as discussed before and additionally there is an input in green, 
a representation of convolution and dimensional reduction  
or pooling represented by the lime-green nodes. Dark blue 
represents a first densely connected layer and light blue the 
other densely connected layers. Wine-red again is the output.  

The CNN is comparable with looking through a tiny window 
and trying to grasp a vast landscape. You would need to 
look at different parts of the landscape from different angles 
behind the window and memorize features, like straight 
lines and where you found them. This is in a sense what the 
convolutional operation does, but it also involves introducing 
non-linearity by an activation function. After the initial  
identification the dimension of the input gets reduced and  
further, more complicated features extracted, for example  
corners or more intricate shapes in a second convolutional layer.  
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You are in a raw uncertain state, just as the initial state of the 
NN. As you are getting instructed your knowledge changes, 
you will get better in regards of how much steering, breaking 
and acceleration will change the behavior of your car. This is  
a phase of training, you refine all the weights of the individual  
parts involved in driving. You are being told what you did 
wrong and how much it influences the handling of the car in 
different conditions.  
 
You want to minimize the mistakes, which is minimizing the 
loss overall and make better predictions on how the car reacts 
do different actions and to make predictions on what actions 
to take to get desired reactions out of the car. This is like the 
training of a NN. When you feel confident with your driving, 

you might change cars and learn to drive new vehicles rather 
quickly. Which is equivalent to generalization or retraining. This 
is a very generalized picture, as what eventually makes us good 
drivers is more complex. We have multiple direct feedback 
loops from our environment, we generalize actions, so two 
actions form one further down the line; shifting, steering, 
buttons and pedals becomes an act of driving. The biggest 
difference tough lies in our brains. For comparison, GPT-3 
has 175 billion parameters, roughly equivalent to connections 
[Bro20]. The human brain is estimated to have around 100 tril-
lion connections, which is only the brain, the other parts of the 
sensory and nervous system not even counting [Cat23]. Also, 
nodes and connections are malleable, and structures are not 
given by design but change all the time [Drag06; Kol98].



Different filters could look like this, see Figure 7. Left is the 
original image, followed by an embossing, followed by vertical 
lines, followed by horizontal lines in a first pass and a second 
pass where corners and longer edges are detected. 

Generally, the architecture would be a cascade of convolution-
al layers and pooling layers. Kernel values are learned through 
a training process like traditional NNs without a convolutional 
layer. The last output of those operations would then be fed 
into either a flattening operation or directly into a densely con-
nected layer. Flattening meaning the conversion of the multi-
dimensional tensor into a one-dimensional vector. The CNN is 
then trained, quite similarly to the already described NNs. The 
training is more involved as other parameters as stride (how
much will the filter move) or padding (how much of an image
will be cut on its corners) are necessary [Alz21; Ert21]. 
CNN could be described by how a child learns to classify  
different things. Imagine teaching a child what a dog is, the 
child points at the animal and you say: »this is a dog«, which 

would be a first data point and label for a multisensory input. 
Upon seeing different breeds of dogs, the child updates and 
refines what features define and how much each feature  
partakes in definition of what a dog is. Now the child sees a 
cat and proudly announces to have seen a dog. You now label 
this new creature with »no, this is a cat«, which prompts  
the child to update what it has learned and adjust the internal  
weights of features making an animal a dog or a cat. The 
defining feature of the dog might not be that it has four legs 
and is furry, but a pronounced snout and the movement and 
posture of said animal might be better suited to classify the 
dog, this would be analogous to the filters which get adjusted 
in the network. 

CNNs in combination with other techniques are not only suited 
for image recognition tasks with labeled data, for example, 
deployed as autoencoders, they might be utilized to reduce 
the spatial dimension of images and apply traditional clustering 
algorithms to the output [Alz21].

24

Further reading

This is a well-made CNN 

demonstration:

State of the art 

Figure 7: Kernel representations from left original image to right last manipulation

Stylized filters or kernels



7.10 Recurrent Neural Networks

As we discussed the workings of other networks, we often 
found analogies to the human brain and learning quite help-
ful. Recurrent Neural Networks (RNN) try to mimic another 
important factor of how humans learn. We do know that our 
environment is not constant, and learning does only happen 
if some time passes. We are able to make decisions based 
on past states and how we want future states to be. This 
only works because we can remember things. The initially 
described NN has no idea of its past states, this is what  
changes in RNN.  
The illustration above shows a schematic of a RNN, where the 
green nodes represent inputs, the lime-green recurrent layers, 
the blue one’s dense layers and the wine-red the output. 
Recurrent networks loop previous state information back on 
themselves, so they can record the hidden state they were in 
in a previous step in time [Rum85].  
 
Besides input information they also require information about 
time, or a series of values which occur after each other. 
Consider this example. If you have data points over time, the 
oldest is fed into the network and the output of the recurrent 
layer looped back and fed with the second value, then the last 
and so forth. The oldest value in the series is also contributing 
to the overall prediction. Herein lies the problem. The weight 
of the loopback is hard to adjust in such networks, because 
it is hard to find the gradient on back-propagation, which is 
either a vanishing or exploding gradient problem. A vanishing 
gradient means, that given enough loops the weights add up 

so, that the information, which is the gradient vanishes, much 
like an echo vanishes in a long tunnel. On the other hand, 
high weight values add up quickly, much like an avalanche 
picking up more and more snow forcing its way down a hill.  
 
A solution to this problem is a Long Short-Term Memory  
Network (LSTM), which we are not going into great detail 
about [Sch19]. LSTMs can remember long-term memory data 
and short-term memory data. The crucial difference lies in  
the long-term memory, which is not as much and directly  
influenced by adjusting weights, which mitigates the problems  
of training RNNs. LSTMs utilize a set of gates to manage 
memory effectively. These include a forget gate, an input 
gate, and an output gate. The forget gate determines how 
much long-term memory is preserved, the input gate adds to 
the long-term memory comprised of the short-term memory 
and the input. The output gate determines the next short-
term memory from long-term memory the current short-term 
memory and the input.
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Further reading  

A fun demonstration of how one  

could interface a robot and do human 

like handwriting:
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7.11 Generative Adversarial Networks 
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The last concept we like to briefly explain are Generative 
Adversarial Networks (GAN). As the name suggests, the Idea 
behind GANs is, it is in contest with itself. The building blocks 
of the network consist of a generator network, a network to 
process real data and a discriminator, in blue. The generator, 
in lime-green, produces fake date from a random input, it 
then produces a sample from that input. On the other hand, 
there is also real data fed into the network, for example 
images [Goo14].  
 
The discriminator then tries to differentiate real data from  
fake data. Subsequently the loss of the discriminator is  
calculated and by back-propagating through the network  
the weights are adjusted. 

As the training of the network is commencing, the discrimi-
nator gets better in distinguishing fake from real data, as also 
the generator gets better at producing data, that looks like 
real data to the discriminator. At some point the generator 
might produce data that is indistinguishable from the real data 
by the discriminator. In short terms: The generator wants the 
discriminator to classify false data as real and the discriminator 
wants to correctly classify false from real data. A common 
analogy to the inner workings of GANs would be that of art 
forgers and experts. 
  
The goal of the forger is to make a look alike that is indistin-
guishable from a real art piece of an artist. The experts on 
the other hand want to tell if a piece is genuine or not. They 
find clues of why the piece is not genuine and the forger will 
improve its technique, this goes on until either of them can’t 
get any better, either at forging or telling fake from genuine. 

Further reading  

Try out StyleGAN – Human  

on Huggingface:
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7.12 Other types of Neural Networks

In the previous parts we discussed very basic principles of how 
NNs and different approaches for different workloads. As you 
might have guessed there are many more types of networks 
and mechanisms on how they provide the results and how 
their predictions are made. One of the more prominent 
examples of a different kind of architecture are Transformer 
Networks, such as Googles Bard, Metas Llama 2 or OpenAI’s 
ChatGPT [Vas17]. Those networks often are a mix and match 
of different models combined into one, where each of the 
models is needed to do different tasks, such as image recogni-
tion and natural language processing.  
 
Furthermore, in the realm of image generation, there are also 
so-called latent diffusion models, which basically generate 
noise until it resembles an image prompt, those models are 
exceptionally well suited for text to image. Networks and 

techniques can be combined with each other. If you want to 
combine RL with methods explained before, we would call it 
deep reinforcement learning. The actions an agent wants to 
undertake in those scenarios are determined by the NN and no 
longer simpler functions, this would be useful for when there 
are many actions available to the agent.  
 
The same goes for other methods, the outputs of a CNN and a 
DNN could be combined in an extra regression layer to better 
predict certain outcomes. And this cascading or parallelization 
of models can be made even bigger, making the output of 
one model the input or one of the inputs of another and so 
forth. If you get the base ideas of what the individual tools are 
capable of, you can develop a sense of what you might achieve 
through remixing and matching. The flexible toolboxes are 
already there waiting to be utilized.
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8. Methods and application areas

Having outlined the fundamentals of AI and ML, we will now 
discuss our approach to generating use cases, the rationale for 
introducing them, and specific examples built on various meth-
ods and challenges. First some groundwork is needed.AM is 
a broad field and consists of plethora of processes, machines, 
and procedures. In this Deep Dive we are approaching the use 
cases process wise from Laser Powder Bed Fusion (LPBF).  
 
As on an industrial scale, LBPF is by far the most utilized and 
is nowadays considered the workhorse of industrialized AM. 
The second one is more of an assumption. We assume, that at 
least the data sources for the use cases are available, at some 
point feature engineering and data preparation is necessary, 
but we assume, that you do not need to build specialized 

sensors for a given process but have that covered already. 
The last one would be, that we are not looking for use cases 
on a petabyte data level, which would require a completely 
different approach regarding acquisition, pipeline, storage, 
processing, and evaluation. We are not developing use cases 
operating on »big data« amounts of data, and with that we 
mean the before mentioned petabytes of data. To summarize, 
we developed use cases for day to day AM operations either 
on an enterprise integrated scale, as in »the AM branch of  
the enterprise« or on a shop floor level.  
 
All in all, this does not mean, that those use cases are not 
applicable for larger operations but might require a lot more 
involvement in terms of data engineering. 



8.2 Evaluation design         
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8.1 Design of the use cases         

Current research and industry statements define challenges 
AM is facing right now [Liu23; Fra22; Amf19; Amp23]. Those 
include cost-per-part, sustainability, quality assurance, up- 
skilling workforce, new materials, supply chain management  
and automation. Each of those categories represent a challenge 
in further advancing AM from »niche high tech« to the  
»manufacturing of choice«. We worked out, what defines 
those challenges and discussed them with stakeholders in the 
AM industry and experts from different fields of the AI and 
data science community. For this, we choose to conduct a 
workshop with both groups. 
  
This workshop consisted of a multi staged approach. We first 
elaborated, to get the AI and data science experts on the same 
page, what challenges AM is facing. This resulted in a fine 
granulation of sub-challenges in each of the forementioned 

categories. After that, we elaborated on those challenges. 
Firstly, we collected ideas of potential fields of improvements 
stemming from the challenges. Secondly, we took these 
ideas and asked: How are we facing the hurdles right now? 
What are the instruments in tools involved and what data 
is our foundation for an informed decision without the use 
digital state of the art methods? We then expanded on those 
questions and pondered on how to use our existing tools 
and methodologies and expand them rather than completely 
substitute them. This also includes how we do processes right 
now, without the use of AI. We advanced on this contextu-
alization by expanding on selected ideas, finally conveying 
ideas into use cases. Involved in the contextualization and idea 
to use case transformation where also some thoughts about 
evaluation and insights into potential performance analysis of 
those use cases.

Because you should never change a running system, we did 
primarily focus on the challenges described and from there 
we build our use cases. Thus, we defined our concrete use 
case benefit and what we consider added value. Secondly, we 
designed them in such a manner, that they ensured an other-
wise taken care of problem would not be solved just differently 
because it was already solved before. In a nutshell: Either make 
a process more reliable, faster or cover a yet uncovered area 
and advance AM by utilizing completely new approaches. The 
use cases all highlight different problems and, at least on small 
scale scientific studies, have been rated by industry experts 
and yielded promising results in previous research. To achieve 

this, we questioned three distinct groups of experts regarding 
impact on the given hurdles. We also asked the experts to pro-
vide their opinion on the probable implementation difficulty 
and scalability of the use cases. Lastly, we sorted the challeng-
es by their importance to the AM community. This resulted in a 
portfolio matrix, displaying the importance of each of the use 
cases for AM and the difficulty in implementation. Further-
more, we added the challenges as dimensions to the use cases 
expressing their respective domain. The obtained figures and 
dimension characteristics where then further discussed with 
experts of both domains alike. 



AM is a key enabler to  
build future technologies.  
The same is true for AI.«

»
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9. Challenges of Additive Manufacturing

There are several driving factors that factor into the cost of 
AM, that are symptomatic of new and emerging technologies. 
New technologies, that offer a significant advantage over 
other technologies, or previous generations, tend to be priced 
higher, then conventional ones. This is especially true if there 
are few competitors on the market. Although initial invest-
ments in AM capability is steadily decreasing and with more 
and more competitors on the market. This trend is presum-
ably going to continue, material prices are still higher than 
conventional bar stock for example, which gets even more 
pronounced if you are working on simple, close to stock parts. 
With dropping additive material prices, more and more usage 
areas and geometries will economically be feasible with AM. 
Factoring into cost is more then material price. One of the
driving factors is the complexity of getting a process to have
stable, continuous, and high yields with an expected and satis-
factory quality. In these chains, the complex parts engineering
section directly factors in the low throughput of processes 
and high machine occupancy. You want to get a part the first 

time right, even more so if it is an expensive part of complex 
geometrical shape. This often means that those parts, where 
high yield is critical are going to be printed as a single part 
on a given printer, increasing overall machine time needed, 
powder to be recycled and machine volume utilization to be 
low. Which also ups the time needed to finish a sequence of 
jobs on a given machine. 
Most of that meaning is, that AM can not play out is core 
strengths on complex geometries and less material waste, as 
material prices are too high, yield is comparably low and  
processes are slow leading to high costs. There are also other 
factors involved in the high cost-per-part. AM is still a niche 
high technology, suitable only when other means of production  
do not achieve the desired properties. Furthermore, mainte-
nance of machines is rather costly, this is partly mitigated by 
AM not needing any expensive tooling if it is used as the only 
manufacturing technology involved in producing the part. 
Often that is also not the case, as most additively produced 
parts need subtractive post processing [Amp23].

Legislature, customers and manufacturers are shifting their 
focus to more sustainable means of production [Bun23]. 
Although material waste on a single process is smaller than 
most conventional production methods, other hurdles are in 
the way of truly sustainable AM. Especially the legislative focus 
shift to limit carbon emissions in industry is challenging.  
 
The energy consumption of additively manufactured parts is, 
in some cases orders of magnitude higher, then conventional 
manufacturing. This even is apparent if you are looking at the 
raw power consumption data from conventional manufacturing  
technologies (e.g. mills or lathes) in comparison to LPBF  
systems, where only high-volume subtractive manufacturing  
machines come even close to the energy demand of AM 

machines [Yoo14]. To be clear, this differs greatly between 
different processes. This is equally true for raw materials. The 
process of powder production is energy intensive and another 
step that is not needed in other manufacturing processes. 
Although mixing raw powder with used powder is a valid 
approach in some cases. It is not entirely feasible for every 
material, especially if oxidation due to handling, sieving, and 
mixing is a concern. This often leads to the need to recycle 
powders similarly to how other metal scraps handled in the 
industry, negating the advantages. As decarbonization gets 
more important by the hour, AM and other branches need 
to overcome their shortcomings and play out their strengths 
even more, reducing resource consumption and overall carbon 
emissions along the entire value chain. 

9.2 Sustainability

9.1 Costs-per-part
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9.3 Quality assurance

In quality assurance defines that certain standards in produc-
tion are met, they should be met consistently. In AM quality 
assurance is particularly difficult as a lot of defining factors 
come together. The first one being, that most of the processes 
are just now beginning to mature to a point, where you can 
get consistent and reliable quality while maintaining specific 
process parameters.  
 
A second factor is, that processes stability and quality can 
differ immensely while doing new parts, even on the same 
machine. This is partly due to the complexity of process  
parameters and the underlying physical principles involved in 
AM but also part due to the lack of common standards and 
databases regarding process parameters. Material quality 
can change from batch to batch and from manufacturer to 
manufacturer. Furthermore, there are only self-imposed quality 
standards. This leads to a mediocre repeatability even with 
the same process parameters, if you are introducing even 
more parameters, like you would with sinter-based methods, 
achieving an understandable quality is a challenge. There is a 
wide range of sensors and methods available for monitoring 

ongoing prints, such as thermal imaging, cameras in general, 
flow sensors and many more. Using the data to comprehen-
sively predict an outcome of a print poses challenges, as it 
requires deep process understanding in a non-standardized 
environment. Trials to get quality assurance in process working 
are generally expensive and time consuming and differ from 
subtractive manufacturing in that manner a lot, where you 
can home in your process while setting up the machines for 
relatively cheap. Running in a process to a satisfactory degree 
involves a lot more time and money to be spent on a particular 
part. Lastly, the processes are highly manual and in-depth 
quality assurance requires to test single parts, often destruc-
tively. Furthermore, stock manufacturers in conventional 
manufacturing often guarantee their quality or their stock is 
certified. This takes some risks away from the part manu- 
facturers, as they are not liable for what the insides of a mate-
rial look like. The work is happening on the surface. The free-
dom to design the inner workings and structures of additively  
manufactured parts adds another dimension to quality  
assurance, not only being responsible for the surface of a part, 
but its entire volume. 

9.4 Upskilling workforce

Work on vocational training and anchoring AM in technicians 
training has just started. But as of now, there is still no formal 
training on additive machines. This is just one of the puzzle 
pieces in enabling the workforce on additive processes and 
made much more complex through lacking in other fields.  
 
One of those fields is the dire need for standardization. This 
lack of standardization starts with the general usability of the 
machines themselves. In traditional manufacturing you find a  
uniform iconography that is identical or very similar between 
different machine manufacturers and machines. The second 
being the code that governs the machines behavior, which 
overall is described by g-code. This goes even so far, that  
experienced technicians can manipulate machine operations  
on a code level. Both enabling fast switching to newer 
machines or different machines on a shop floor altogether. 
Further difficulty in training the workforce arises from how 
different even machines from the same product line might 

behave in operation. Successful training is only achieved on a 
company level or through instructions by machine manufac-
turers. Besides technicians operating machines and having no 
formal training available to them the engineering part is also 
quite diffuse. Product designers and mechanical engineers 
alike lack the formal education and thus the necessary skills 
to adequately design for AM and exploit the strengths of the 
technology. This partly can be attributed to slow adaptation 
of new technologies in higher education, but also to a lack of 
guidelines on how to properly design for AM.  
Knowledge on proper designs often is a key advantage over 
competitors in the tight space that is the additive industry,  
but also leads to a general lack of knowledge about the tech-
nology outside of the industry. Overall AM is lacking proper 
training, which is partly due to the emerging nature of the 
technology, but a big part can be assigned to a lack of open 
standards and guidelines for training, design, and machine 
interoperability. 
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9.6 Supply chain management

9.7 Automation

9.5 New materials

One of the core strengths of AM is, that it can produce intri-
cate, structurally sound, and high-quality parts with a small 
machine shop and comparably lightweight raw materials. This 
initially makes it ideal for distributed manufacturing, or on-site 
manufacturing. Obstacles arise from the need for accreditation 
of processes or parts. Industries which would profit most from 
on site manufacturing usually have the highest requirements 
regarding accreditation, such as the aerospace industry. This 
usually goes hand in hand with long procedures to get new 
processes accredited and in case of the aerospace industry, 

flying. Recent events have also shown that supply chains, not 
specific to AM, often lack the robustness and resilience to keep 
supply up when interrupted by external events. As logistics will 
inevitably get more expensive, if on road transportation with 
trailers remains the workhorse of the transportation industry 
AM could heavily benefit from distributed supply chains, which 
are not as dependent on large quantities of material shipping. 
Still, most manufacturing is heavily dependent on exact pro-
cessing stages and order concerning the whole manufacturing 
chain and AM is no exclusion.

Although AM is often pitched as the digital manufacturing 
technique, it is filled with manual process steps. This can be, in 
some part attributed to the comparatively novelty of the whole 
process chain. But in automation AM is its own adversary. The 
number of different shapes and diversity of processes and post 
processing steps makes automation difficult.  
A single job running on a machine can have a multitude of 
parts, where each part needs to be post processed differently. 
If every part on the substrate then has a different geometry, 
automatic extraction gets even more difficult without intelligent  
systems in place, either in robotics or in planning. Material 
management is also challenging. E.g. in fused filament fabrica-
tion, filaments are handled quite easily by automated hoppers 
and other conveyor systems, but micro particulate powders 

pose a different challenge altogether. Automating powder 
delivery and handling is challenging. Environmental concerns 
regarding impact on air quality needs to be considered as well 
as explosion risks and even how to get the material from a to 
b without contaminating the conveyor systems with different 
materials. This not only applies while getting the powder into 
the machine, but also for extracting powder and feeding it 
back to a recycling loop. Those steps are predominantly done 
manually these days. Other fields, with lack automation is pro-
cess control, monitoring and even tasks as simple as scheduling 
machine operations, which may sound benign, but usually 
humans are good at these tasks, so often it is done manually. 
In conclusion automation would also benefit heavily from stan-
dardization, common interfaces and a simpler data handling.  

Acquiring and testing new materials, or even materials that 
were used as stock before in other manufacturing methods 
presents itself as a highly manual and expensive process. Mate-
rials used in conventional processes might not necessarily dis-
play the same qualities after being used in LPBF. Materials react 
differently to temperature changes and heating and cooling 
cycles, might require different atmospheres to be processed 
and even not work at all in the process they are trialed to. New 
materials are also restricted by the availability of powders. 
Bluntly speaking, you could just get about any feedstock of 
material for a milling process and keep testing different tools 

and techniques until a satisfactory result arises. Most of the 
additively manufactured materials are at some point derived 
from traditional products because they promised to be easier 
worked on then with traditional methods, for example the 
goal was to limit the consumption of tools on especially bad to 
machine materials such as titanium or nickel alloys.  
There is certain additive only materials development, but its 
not the norm. Lastly, novelty is plaguing AM again. Whereas 
traditional manufacturing had decades to develop materials for 
casting, machining or welding, the development for AM just 
does not have this headstart. 
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Figure 8: Trend AI in AM; date of evaluation: September 2023

10. Application and evaluation  
of AI in the industry

As of now, there is a lot of research underway concerning AM 
and AI. In the Scopus literature database, articles and journals 
concerning themselves with a combination of both topics are 
on a steep rise. Looking at each of those topics alone, doesn’t 
hinder the trend, the growth is even more substantial [Sco23].
The main research focus is process related, starting from  
in-situ defect detection to classification and research on new  
materials and materials research. As a field that relies heavily  
on simulation-based approaches, a new field of research 
emerging in AM and AI are Physics Informed Neural Networks 
(PINNs) [Has21; Pra22; Sil19]. The second field undergoing a 
new wave of research is on how to manage production and 
how to further advance our production environments with AI, 
where AM might not be the central process, but could benefit 
a lot from current research [Sch22; Zha21].  
We will guide you through the first use case in more depth,  
as this was the use case, which was in favor of the AM com-
munity. The first one being in-situ defect detection and quality 
prediction, this use case concerns itself with monitoring  
printing processes and make predictions based on what can  
be extrapolated from the information collected. 

The second use case we came up with deals with the energy 
consumption of additive machines and additive production in 
general, this may come to fruition, as more and more emphasis  
is being put on carbon imprint of industrial processes. The 
third one is how we could make production planning easier, 
especially in a job shop environment, where traditional 
approaches often struggle due to the immense compute 
power needed. This approach could free up human resources  
to tackle more human adequate tasks. The fourth case 
concerns parameter prediction, at its core delivering methods 
and tools for a first-time right set of parameters for a given 
machine and material. The fifth usage of AI puts emphasis on 
the scalability and routability of additive processes and tries 
to deliver on a method to find the adequate manufacturing 
routes for a given part not based on what material might have 
been ordered but based on the usage and the desired prop-
erties of that part. And lastly, a use case, that leverages the 
novel developments regarding PINNs to supplement classical 
fluid dynamics and finite elements simulation for nesting and 
build job preparation. This use case is really at the forefront of 
what might be possible with an multi staged, multi discipline 
approach.  
 
We have structured our use cases based on their primary 
purpose to begin with, we defined probable results and 
success criteria. Furthermore, we defined scaling opportunities 
and implementation stages, the first one making statements 
about what a fully implemented system might be useful for in 
the future, the latter describing how we could implement the 
approach piece by piece to get the desired result.  

Another element being the actions and methods involved 
with the use case and certain prerequisites, risks, and limita-
tions of each approach. Lastly, we assessed the suitability for 
LPBF and if not suitable, what specific AM process might be 
worth considering. This also involves the respective domain 
knowledge to get the tool underway, also concerning users 
and stakeholders. After we have discussed the use cases, we 
like to give you an overview about expert opinions regarding 
the use cases. This involves sorting them by their respective 
domain and potential influence on the hurdles AM is facing 
right now and to give you a brief analysis on the potential and 
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The flexible AI toolboxes  
are already there waiting  
to be utilized.«

»
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10.1 Concrete use cases of AI in Additive Manufacturing

10.1.1 In-situ defect detection and  
   quality prediction

On our first use case, we want to be more detailed then on the 
others, graphically and content wise. Workshop and question-
naire results showed, that one of the most pressing challenges 
is process stability and thus, monitoring and making predictions 
in-situ. This directly translates into what we are expecting to be 
the purpose of this use case, namely, to make valid predictions 
on the quality and thus potential defects of parts, while the 
printing process is still ongoing. It might sound like a noble but 
potentially very hard endevor, but there are several advantages  
of the methods we like to present. But first, we need to define 
a scope, this translates to the probable implementation stages 
of the use case. The interactions in each build job are highly de- 
pendent on the process parameters, but also on the parts inter- 
acting with each other thermally. Interactions inside the build 
job also depend on the material and obviously on the process  
involved. A first stage could therefore encompass simple geome- 
tries, like test specimen of a given material in LPBF. In first stages, 
the goal is to make predictions on a well understood process  
and material. This could then be broadened to different 
materials, geometries and packing strategies, if the first stages 
are well understood and working within set quality parameters. 
Those quality parameters are defined as use case success criteria, 
with the first being, the monitoring system should reliably de- 
tect in process failures, and later act accordingly. What defines  
failures and what differentiates a good from a bad print must 
be assigned as the target of the given system and is dependent 
on e.g. the application area, material or part certifications. 
 
Careful consideration of quality criteria is essential. One example 
might be the porosity must not be lower then 99.5%. Another  
success criterion would be the exclusion of false positives, which 
are a function of the sensitivity and reliability. A given system 
should only react when it is sure that there is a failure. This 
could also be measured by a threshold, which in turn would be 
dependent on what the level of acceptable non-detection is.  
Normally, you would use the current state of rejected parts to 
be lower then they where before. Lastly, to use all available 
scaling opportunities, a given detection and advisory system 
must be real time capable, meaning that an adequate reaction 
and compensation time is key. One example of differences in 
real time is the traffic collision and avoidance system (TCAS) 
found in aircraft, which must advise pilots basically instanta-
neous, audible and commence immediate action. A completely 
different control system is the temperature control of a home, 
which is quite sluggish and room temperature usually does not 
want to react instantly to changes, which is neither needed nor 

desired. Polling rate is thus not a huge issue and you can utilize 
longer time steps. Both systems are considered real time, as they 
are operating in an adequate time frame for their given job. 
Scaling wise, we could think of different opportunities, the first 
being, to push an advisory system to an automated correction 
system, handling minor corrections in process and monitoring if  
those corrections yielded a success. By monitoring the error 
occurrence and need for corrections, you could get insight in 
degrading machine performance, making the prediction tool a 
valid component of predictive maintenance. The same is 
applicable for raw material properties and quality, an unusual 
high error rate for a certain batch of powder might hint at a bad 
batch overall. A tool being able to achieve this requires certain 
prerequisites, with the first being a very good understanding of  
the given AM process. You need to have experience in the field 
and better still, a wide variety of already acquired monitoring 
data. This makes having or building a robust data pipeline 
obligatory. On a sensor level there are several approaches 
available. For LPBF monitoring based on sensor fusion has 
shown to yield potential. [Wan22a]  
 
High resolution imaging could form a baseline for image pro- 
cessing, thermal imaging a second layer, this could also be fur- 
ther elevated by accompanying x-ray sensors. The imagebased 
sensors could be supplemented by sensors measuring discrete 
variables, e.g.gas flow, chamber temperatures or oxygen level. 
All data must be coupled with the time of their occurrence, as 
all printing processes are time dependent and errors in each 
layer can also develop an impact further down the process chain. 
[Tah23; Gai20] The raw data must undergo an engineering 
process; you do not want to hand over a plethora of image 
data and discrete data points to a NN architecture. If you are 
only interested in localized effects, shrinking the viewport 
could be a valid approach. Batch processing for labeling a time 
series also comes in handy. The approach we are suggesting 
involves a multi input long short-term memory CNN with 
discrete and image data inputs. The combination of multiple 
images has proven to be successful, for example combining 
multiple inputs in a CNN showed better results, then single 
input CNN for example in human emotion detection [Che22]. 
You would use thermal imaging data, the visual data and for 
example x-ray or other spectra as inputs to a CNN. To further 
improve the accuracy, using an autoencoder to reduce the 
features of the images to a more manageable size might be 
beneficial. As processes are time dependent, you would then 
employ an LSTM for satisfy the temporal nature of the process, 
inputs would be the output of the CNN and discrete data. There 
are certainly other approaches and techniques you could use, 
one strategy to get a better understanding of certain structures 
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might also be to use a NN to inpaint future images [Zho24].  
Acquiring the data might be challenging, as collecting the 
appropriate images for training requires a good amount of 
storage and exact timing is crucial. For this kind of work, you 
would need a wide variety of domain knowledge, in this case, 
first and foremost is a way to interface with a machine and 
collect the data, so either you need to deploy your own 
sensors or use the data the manufacturer hands over to you, 
which might not be sufficient. There will be several engineer-
ing challenges involved and thus engineering knowledge is 
needed. For data handling and consequently building a model 
you would need specialist’s knowledge in data engineering 
and data science. This also includes the evaluation and, in the 
end, visualization of the data you acquired. This could be used 
to build an interface on top of the model output. Even with a 
sophisticated user interface and data processing, you will still 
need a technician to factor in other variables to complete the 
picture, act accordingly and supplement the tool. As for the 
risks, with ML tools, especially NNs, transparency is not always 
guaranteed, if high standards are required. For example you 
could deploy Shapley Additive Explanations (SHAP). SHAP tries 

to understand the contribution of features in each model for 
output importance. [Lun17]  User groups and stakeholders  
involved in this use case are certainly manufacturers and 
machine producers, but also material suppliers, as the tool 
could gather valuable performance insights.  
One of the more pressing issues is, that CNNs require a lot of 
fine tuning and are prone to overfitting. Furthermore, the 
acquisition of samples might be tedious and to some degree 
expensive, as you would need good and bad printing results 
and have measured discrete data in process. To mitigate those 
limitations, or when you might hit a certain ceiling with a 
use-case, you should subdivide the use cases. In this example, 
even classifying prints on visual cues is still a valid use case, for 
monitoring and intervening manually. The same goes for 
evaluating, even without AI, you could use the collected data 
for automatic statistical analysis and build a database for later 
projects and production insights. Thus, the steps to get fully 
automatic process correction underway include data acquisi-
tion, outlier detection, quality prediction, material properties 
prediction and in the end automatic process correction. Each 
of those would be an invaluable asset in production.
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10.1.2 Energy and consumption forecasting

The second use case revolves around the energy usage and 
green production in AM, here, we are trying to solve several 
challenges currently occupying AM and manufacturing in 
general. For simplicity this and the other following use cases 
will be much shorter in detail. The approach to forecast energy 
consumption and therefore carbon imprint involves detailed 
LCAs and strict production monitoring as well as external 
sources. Forecasting energy consumption yields potential in 
giving out more detailed LCAs for your manufactured parts, 
which comes in handy if regulatory bodies strive to make 
carbon content for manufacturing a bigger part of the overall 
calculation. The second implication would be, that you could 
buy energy on demand and incorporate energy consumption 
in production planning and even logistics calculations for 
distributed manufacturing. Lastly, you could automatically 
buy energy on exchanges and have a much lower price and 
more sustainable production, as low energy prices often occur 
with high availability of green energy. The last step could be 
to automatically control machines based on energy availabil-
ity and could potentially increase production resilience. The 
benefits in AM are obvious, machines energy consumption is 
much higher than subtractive manufacturing. It also leverages 
the possibility to manufacture where energy prices are low 
and make logistics less costly. If you also factor in resource 
consumption and make an end-to-end LCA, including product 
lifetime, you could get very comprehensive results regarding 
carbon footprint. This would need a robust production plan-
ning in place, which is our next use case. This use case could 
potentially benefit from LSTMs or time series forecasting. 

10.1.3  Accelerated production planning

Manufacturing must cope with range of obstacles and unfore-
seeable circumstances that requires a high level of flexibility 
in an ever-changing environment. Production per se is more 
organic and grown as strictly planned due to the entities and 
number of processes involved in manufacturing goods. This 
especially applies to AM, where parts do not only not run on a 
single line but often get matched and mixed with other parts 
and charges. Yet another challenge is, that managing produc-
tion is often done by a human, who knows all the ins and outs 
of the manufacturing route, thus leaving companies vulnerable 
if said employee would leave the company. 
Solving this problem with classical computational methods is 
rather difficult, as production planning counts as NP-Com-
plete, thus not deterministically solvable in polynomial-time 
leaving only approaches such as metaheuristics or genetic  
algorithms, which do yield good results – but often are 
difficult to expand and incorporate a multitude of objectives. 
Furthermore, they are not quite capable of doing large plan-
ning jobs, as the possible decisions of a given system rise with 
the number of states it can occupy. For production planning, 
we are suggesting a mix of observing real production plans 
and simulating new datasets. This would be a deep reinforced 
learning approach. Scaling could involve starting with a few 
machines and use inputs and outputs to scale into other 
domains, such as post and or preprocessing. A crucial benefit 
is the speed in which once trained networks act, they can not 
only predict but also react flexible to changing circumstances, 
which in turn would free up valuable human resource for more 
important work. 

Accelerated production
planning

Automated multi machine
scheduling

Real data observation
RL in combination with DNN

Energy and consumption
forecasting

Make production predictions  
for energy demand

Time series, regression,
NNs, random forests, DRNN

Parameter prediction  
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parameter identification faster

Image data and discrete data.  
Physical material properties,  

parts properties and parameters: 
CNN and DNN

Brief use case descriptions
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10.1.4  Parameter prediction and development

Our fourth use case concerns itself with parameter prediction  
and development. This ties directly into the first and leverages  
some of the technologies, especially in the sensor and data 
domain. The data involved here is more sophisticated, as you 
would also want to analyze the microstructure of a given 
sample. This is also a more static approach, which wants to 
map given sample image data directly to the process parameters 
involved in producting the specimen. Here we rely largely on 
image recognition, which on itself could cluster a given dataset 
in quality levels. This could advance parameter development. 
This is complemented by discrete data, such as the process 
parameters. For further improvement, labeled data is required. 
Depending on the direction, from parameter to material  
property or from property to parameter, you could predict one 
or the other. It would also be conceivable to make prediction 
on how a structure would look if you will further advance the 
process by utilizing a diffuser or a GAN. Depending on how 
deep you would go into material science a system that can 
come up with new alloys solely for AM would be the master-
piece. The feasibility of this is shown in medicine and materials 
science, where new drugs and protein structures are conceived 
by AI [Sas23; Wat23].

10.1.5  Process identification and planning for  
    manufacturing and remanufacturing

Within this use case lies an amalgamation of production 
planning and materials properties prediction. Some systems 

allow customers to choose different materials for their on-de-
mand prints. This is widely employed but demands a degree 
of knowledge from said customers. One use case might be, 
to implement this expert knowledge into a system and let it 
decide, depending on usage and load cases and geometries, 
what material is applicable for a given job. Albeit this would 
require a lot of parts and geometries already manufactured, 
with some sort of indication if said parts fulfilled their job and 
or had the right properties, it would open the way for AM into 
a wider audience and improve remanufacturing of parts on a 
large scale. One example is remanufacturing of spare parts for 
discontinued machines or vehicles. Materials have developed 
a lot in recent years and many polymers were simply not avail-
able at the time of building older machines. You could easily 
get the same material properties from a polymer today, that 
you only got from a metal 20 years ago. This opens completely 
new manufacturing routes. The same goes for load balanc-
ing in each production. Maybe another alloy, that is available 
would offer the capabilities needed but neither you nor the 
customer thought about using it. You could even go so far as 
to use a different process altogether. There is no reason to use 
LBPF over directed energy deposition or metals over polymers 
if the desired properties could be archived by either. Managing 
remanufacturing routes and advising customers and manufac-
turers alike on processes is the goal of this use case. There are 
numerous ways to archive that, but using CNNs to analyze the 
geometry and compare that to the desired properties seems 
the most feasible.

10.1.6  Print strategy optimization –  
    advanced nesting and simulation

The last use case is about simulating and developing novel 
nesting strategies in advance. The big advantage of this use 
case is, that you would not really require real world data, as 
we have simulation tools, that yield exact results by calculating 
partial solutions to the governing differential equations such as 
the Navier–Stokes equations describing fluid dynamics. Those 
constraining equations could form the basis of a voxel based 
PINN simulation approach. Training of this model is conduct-
ed, by simulating different geometries and nesting strategies 
and using the data to train the model itself. First steps would 
only consider simple geometries, which later could be more 
advanced as the model gets build up. The goal here would be 
to shorten simulation times and proposing nesting strategies 
for the desired parameters. Another application would be a 
fast check system, that does not require long simulations that 
take hours or even days, to check if technicians and engineers 
made some process braking errors during nesting. The biggest 
challenge is the simulative expense for generating the data  
and to get the level of detail right to fit the demands of AM. 
Feasibility has been shown recently by simulating whole wind-
parks with PINNs [Bho22].

Process identification  
and planning for manufacturing  

and remanufacturing

Decision Support for
Remanufacturing of Parts using 

Additive Manufacturing

Voxel, graphs or  
other geometries.  

GAN or CNN.

Print strategy optimization – 
advanced

nesting and simulation

Advance nesting strategies 
through non-numerical
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for CFD



 

Figure 11: Overall score of use cases
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The aforementioned use cases obviously need some context, 
first in foremost, the two largest challenges AM is facing right 
now are quality assurance and automation. Both are covered  
in the use cases, but only covering the digital side of things.   
Even the most sophisticated digital systems, can not fully solve 
challenges regarding automation, if we do not change the 
physical processes, such as parts handling or powder handling. 
Clearly there are many improvements being made, especially in 
terms of computer vision and robotics, but we are not tackling 
those here. 
That said, each of the use cases has a different impact on the 
specific challenges, we asked AM and AI experts alike, where 
the use cases would make the strongest impact. All of the use 
cases, seem to target automation to some degree, while most 
of them are specific in one or the other domain. For showing 
how use cases would potentially impact the given challenges, 
we used spiderweb diagrams, where each of the web edges 
shows the value for the given challenge, with one being low 
and five being the highest.

The diagrams show, that the best overall performance lines 
up very good with the demand we diagnosed before. Each of 
those diagrams shows, that all use cases to a certain degree 
lower the cost per part, this goes to show, that the overarching 
challenge AM is facing is the inherently higher cost, compared 
to other manufacturing methods. Each of the use cases  
has a different strong point, which aligns with our preliminary 
definition of said use cases. 

While energy forecasting focuses on sustainability, advanced 
nesting and simulation focuses on the automation aspect.  
We also scored the use cases based on the challenge ranking.  
This roughly is described by the area under the spiderweb, 
multiplied by a weighted score from our assessment of we 
showed in the bar graph at the beginning of the paragraph. 
This data is used, to devise an overall weighted score of the 
use cases. A second group of experts also has judged the 
development complexity, here we applied a weight consisting 

Figure 10: Overall score / Implementation height matrix

Figure 9: Perceived importance of the grand challenges
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of ranked potential development and implementation cost. 
Both resulted in a portfolio matrix consisting of the impact, 
described by a normalized overall score and the implementa-
tion difficulty described also by a normalized score from the 
aforementioned values. The values seem to be very far apart in 
the graphic, this is for visualization purposes.
To give context to distance, we also included a bar graph 
showing the overall scores. Especially the second graphic 
shows, that the use cases do not differ that much in overall 

score but mirror the expectations we have for tackling the 
challenges AM is facing. The easy grab would be to automate 
the parameter prediction, it has a good overall score, and the 
implementation height is not too high. Energy forecasting 
is of now not a very pressing issue, but the implementation 
height is low and might be a good entry point for production 
planning and scheduling. Which comfortable sits in the middle 
ground, making it an ideal candidate to automate AM and get 
pipelines underway and acquaint personell with ML workflows.
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Challenge relation of use cases

Figure 12: Challenge relation of use cases a) energy consumption and forecasting, b) parameter development,  

c) advanced nesting and simulation, d) in-situ monitoring, e) manufacturing rerouting, f) production planning
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11. Summary & Conclusion   

Although AM is not as new as it used to be, it is widely still 
considered an emergent technology and herein lies big hopes 
of automation and digitization. The history of AM is layered 
with the same hurdles that also AI had to take. More in the 
realm of developing the machinery, but also managing and 
storing 3D files, which has also only been around since a few  
decades. In this sense, both technologies are somewhat similar.  
This is clearly shown by research in both technologies and by 
the connections in research in both fields. Both considered as 
enabler and key technologies in industry 4.0. Those connec-
tions become more apparent if you look at bibliographic  
analysis and the clusters both are involved in. This analysis is 
the parting point of this Deep Dive. So, allow us a few con-
clusions, starting with the challenges and concluding on how 
significant AI is and might be in the future of AM technology.

First and foremost, AM is facing a wide variety of challenges, 
with the most pressing being quality assurance and process 
and manufacturing automation. This leads to the conclusion, 
that other challenges might be important, but not as import-
ant as general automated and over a wide variety of parts and 
conditions stable production that can deal with new materials 
and emphasize and leverage the unique characteristics of AM. 
All those challenges influence the overall cost of additively 
manufactured parts, which obviously needs to be lower than 
it is now.  We gave you a rough outline of the technologies 
regarding ML and AI that are out there, with a lot of them 
already in productive use, or in the case of medicine, helping  
patients. They all still require some degree of oversight 
from human operators in critical applications. Non-critical 
applications though are another field, where text to speech 
and speech to text applications regarding natural language 
processing are the bread and butter of modern device 
interactions. Advancements in computational power made a 
lot of the processing available locally and secure, where the 
only computationally intensive part is training the respective 
models. This further shows the realtime readiness of most 
applications.  
AI has potential in all our daily, but also professional lives.  
We just scratched the surface of applications and use cases 

that where not possible and are just now becoming possible 
and doable. The mentality of how we use AI is different from 
how we normally would proceed in engineering. Most of the 
tools to implement AI are out there and available for you to 
test, try and implement. You don’t need to mangle with in 
depth mathematical model building or trying out completely  
novel approaches. The AM industry is proficient looking 
beyond the box and as the technology becomes cheaper from 
a machine perspective, it is time to make it more industrialized.  
 
Our exploration into the use cases AI can play in additive 
manufacturing demonstrates the diversity and depth of pos-
sible applications. From in situ defect detection to advanced 
production planning and process identification, AI most likely 
stands as a key enabler in optimizing and advancing AM. But 
even now, there are hurdles to overcome. Those are mostly 
regarding the basis of our data, if you implement a new tech-
nology, or machine, or process you should ask yourself, how 
can you gather data and thus insights from this process. This is 
valid, even if it is just for visualization purposes. This is especial-
ly true, as we ran into the big wall that is data availability and 
preparation. If an industry wants to stay competitive today, no 
matter the market, it must optimize and gather insights into its 
processes.  

So how are we proceeding with that?  

AM is a key enabler to build future technologies not feasible by 
subtracting material and letting it go to waste, its here to stay. 
The same is true for AI and unless we are not heading for 
some sort of Frank Herbert and Dune kind of ban of thinking 
machines, AI can be a great benefit, if deployed timely, ethically, 
and correctly. Future possibilities might involve AI being  
the designers, engineers or developers’ copilot or right hand,  
freeing up valuable creative resources to make the tedious 
and not automated work better and human centric. Making 
processes involving repetitive tasks obsolete. If we combine 
this with the unique geometric freedom, and the very resource 
friendly nature of AM, we might even overcome the dreaded 
skilled labor shortage and be a bit more competitive than 
throwing valuable material away.  



Figure 13: Scopus data knowledge graph and bibliographic analysis
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