www.metals4printing.com

Pushing the boundaries in AM of Al alloys: material candidates for high-performance applications

Burghardt Klöden

The m4p story...

Rapid regional and global expansion

- Magdeburg/DE Produktion 2015
- Feistritz i.R./AT Produktion 2017
- Torino/IT Subs Distribution EU- Sout/West 2020
- Bangalore/IN Subs Distribution APAC 2021
- Budapest/Hun Subs
 Distribution Central-East Europe
 2022

We serve all Countries in Europe and most of APAC countries - US/CA entry planned for 2023

Material Portfolio....

- All relevant Material Families: Fe, Al, Cu, Ti, Ni, Co, W
- > 110 Powder Specs in the Portfolio
- > 50 Items on stock
- Available in different PSD
- Materials for all relevant Metal AM technologies: L-PBF, EBM, DED, BJ
- Customized Materials available

The m4p story...

The digital approach:

All analysis data is stored in the **m4p Company portal** and enables gapless tracking of all materials at batch level through the entire lifecycle.

Single values & parameters can be traced on batch level QM: ISO 9001 – Implementation started in 2021 – in progress

Laboratory Analysis

High-performance Al – alloy overview

m4p[™] StrengthAl

Material summary

Properties

- Combination of high specific strength and high ductility
- microstructure is stable up to ca. 200°C
- low anisotropy of properties

Applications

- (aero)space, motorsports
- Weight-optimized applications in general mechanical engineering, lightweight constructon and automotive engineering (mostly no MMC-material allowed)
- decorative elements (by anodization)

State / property	yield strength [MPa]	tensile strength [MPa]	elongation [%]	specific strength [Nm/g]	hardness [HV10]
as-built	260 - 280	320 - 350	10 - 24	120 - 130	85 - 95
after heat treatment	420 - 440	465 - 500	12 - 17	175 - 185	130 - 170

process: EOS M290 | layer thickness: $30\mu m$ | build rate: ca. 11 cm³ / h | heat treatment: $350^{\circ}C$, 6h

m4p[™] StrengthAl

Case study (I): Politecnico di Milano

Process Specifics

- Machine: Renishaw AM 250
- Full factorial DoE, maximum density (99,97%) reached at $E_v = 173 \text{ J} / \text{mm}^3$
- Subsequent heat treatments: T = 300 ... 400°C, t = 1 ... 24h

Main Results (mechanical properties)

- Yield strength and tensile strength are in the same range as m4p values (EOS M290)
- Elongation: some dependence on temperature, same range @ 375°C, 8h

Table 4

Mechanical properties of the Al-Mg-Zr-Sc alloy heat treated at 375 °C and 350 °C for 8 h and 24 h, respectively, and.

	Yield Strength [MPa]	Tensile Strength [MPa]	Elongation at Fracture [%]
Aged 375 °C – 8 h	460 (±10)	489 (±6)	14.3 (±2.7)
Aged 350 °C – 24 h	454 (±2)	485 (±3)	12.1 (±4.0)
As-built	280	350	23

m4p[™] StrengthAl

Case study (II): PUNTOZERO

Goals

- Redesign of a conventionally manufactured motor bike linkage, while taking into account AM manufacturability
- Increase stiffness while maintaining lowest possible weight
- Original part is manufactured in AW-7075 → very challenging for PBF-LB, m4pTM StrengthAl was chosen as alternative

Main Results

- Weight reduction: -51%
- Stiffness increase: +64%

Original Component	Material	Weight [g]	max. Deflection [mm]	max. Load [kN]
Link 1	AW-7075	207	<mark>0,18</mark>	26
Link 2	AW-7075	316	0,60	13

Optimised Component	Material	Weight [g]	max. Deflection [mm]	max. Load [kN]
Link 1	StrengthAl	121	0,08	26
Link 2	StrengthAl	136	0,20	13

m4p[™] ResistAl

Material summary

Properties

- Developed for high-temperature applications with respect to mechanical properties
- microstructure is stable up to ca. 400°C
- no additional heat treatment needed

Applications

- Mechanically-loaded parts for high temperatures (250 400°C) in (aero)space, motorsports, automotive
- Weight-optimized & mechanically-loaded applications in general mechanical engineering

temperature	yield strength [MPa]	tensile strength [MPa]	elongation [%]
25°C	330	490	7
250°C	280	350	7

process: EOS M290 | layer thickness: $40 \mu m$ | build rate: ca. 20 cm 3

m4p[™] ResistAl

Material properties (I): high-temperature yield strength

Results

- 80% higher yield strength (at 250°C) compared to conventional used AW2618 after aging
- High-strength MMCcompetitors show large strength drop at 200°C

m4p[™] ResistAl

Material properties (II): fatigue

Results

- Number of tested samples for each temperature: 16 machined specimens
- Same fatigue strength at room temperature as at 250°C
- Low effect of temperatures up to 350°C
- Ideal for operating temperatures up from 200°C

m4p[™] PureAl

Material summary

Properties

- High purity
- High thermal and electrical conductivity in combination with low density
- Easier to process then pure Cu

Applications

- Mechanical engineering
- Chemical industry
- Aerospace

state	yield strength [MPa]	tensile strength [MPa]	elongation [%]	Thermal conductivity [W/(m*K)]	Electrical conductivity [MS
As built	75	88	26	235	29

process: EOS M290 | layer thickness: $30\mu m$ | build rate: ca. 26 cm³ / h

m4p[™] PureAl

Case study: PUNTOZERO

Goals

- redesign of a cold plate of the power electronics of Dynamis PRC's electric race car, taking into account AM manufacturability
- improvement of fluid flow and heat transfer

Main Results

- improvement targets were met
- in addition, lattice structures were applied for reducing production costs and weight, furthermore manufacturability was improved & contact surface was increased

High-performance Al alloys

Summary

- There is a world beyond AlSi10Mg
- Depending on material properties, tailored material solutions have been developed for:
 - high strength
 - high temperature strength
 - high conductivity
- Case studies were performed on several alloys in order to assess the application potential, wich in all cases is very promising

www.metals4printing.com

metals

printing

Contact

Burghardt Klöden b.kloeden@metals4printing.com +49 173 5906597

Thank you for your attention